A capacitor has a charge of 4.6 μC. An E-field of 1.8 kV/mm is desired between the plates. There's no dielectric. What must be the area of each plate?

Respuesta :

Answer:

[tex]A = 0.2875 m^2[/tex]

Explanation:

As we know that

[tex]Q = 4.6 \mu C[/tex]

E = 1.8 kV/mm

now we know that electric field between the plated of capacitor is given as

[tex]E = \frac{\sigma}{\epsilon_0}[/tex]

now we will have

[tex]1.8 \times 10^6 = \frac{\sigma}{\epsilon_0}[/tex]

[tex]\sigma = (1.8 \times 10^6)(8.85 \times 10^{-12})[/tex]

[tex]\sigma = 1.6 \times 10^{-5} C/m^2[/tex]

now we have

[tex]\sigma = \frac{Q}{A}[/tex]

now we have area of the plates of capacitor

[tex]A = \frac{Q}{\sigma}[/tex]

[tex]A = \frac{4.6 \times 10^{-6}}{1.6 \times 10^{-5}}[/tex]

[tex]A = 0.2875 m^2[/tex]

Q&A Education