A quantity of gas has a volume of 0.20 cubic meter and an absolute temperature of 333 degrees kelvin. When the temperature of the gas is raised to 533 degrees kelvin, what is the new volume of the gas? (Assume that there's no change in pressure.) A. 0.0006 m^3 B. 0.2333 m^3 C. 0.3198m^3 D. 0.2146 m^3

Respuesta :

Answer:

Option C is the correct answer.

Explanation:

By Charles's law we have

        V ∝ T

That is

       [tex]\frac{V_1}{T_1}=\frac{V_2}{T_2}[/tex]

Here given that

      V₁ = 0.20 cubic meter

      T₁ = 333 K

      T₂ = 533 K

Substituting

      [tex]\frac{V_1}{T_1}=\frac{V_2}{T_2}\\\\\frac{0.20}{333}=\frac{V_2}{533}\\\\V_2=\frac{0.20}{333}\times 533=0.3198m^3[/tex]

New volume of the gas  = 0.3198 m³

Option C is the correct answer.

Q&A Education