Answer:
Mass of the climber = 69.38 kg
Explanation:
Change in length
[tex]\Delta L=\frac{PL}{AE}[/tex]
Load, P = m x 9.81 = 9.81m
Young's modulus, Y = 0.37 x 10¹⁰ N/m²
Area
[tex]A=\frac{\pi (8.3\times 10^{-3})^2}{4}=5.41\times 10^{-5}m^2[/tex]
Length, L = 15 m
ΔL = 5.1 cm = 0.051 m
Substituting
[tex]0.051=\frac{9.81m\times 15}{5.41\times 10^{-5}\times 0.37\times 10^{10}}\\\\m=69.38kg[/tex]
Mass of the climber = 69.38 kg