A thin, circular disc is made of lead and has a radius of 0.250 cm at 20.0 °C. Determine the change in the area of the circle if the temperature is increased to 800.0 °C. The coefficient of linear thermal expansion for lead is 29.0 x 10^-6/C°.

Respuesta :

Answer:

The change in the area of the circle is [tex]8.88\times10^{-7}\ m^2[/tex]

Explanation:

Given that,

Radius = 0.250 cm

Temperature = 20.0°C

Final temperature =800.0°C

Coefficient of linear thermal expansion for lead[tex]\alpha =29.0\times10^{-6}\ /\°C [/tex]

We calculate the change in temperature,

[tex]\Delta T=800.0-20.0=780^{\circ}[/tex]

Now, We calculate the area of the disc

[tex]A = \pi r^2[/tex]

Put the value into the formula

[tex]A=3.14\times(2.5\times10^{-3})^2[/tex]

[tex]A =1.9625\times10^{-5}\ m^2[/tex]

We need to calculate the areal expansion

[tex]\Delta A=2\alpha\times A\times\Delta T[/tex]

[tex]\Delta A=2\times29.0\times10^{-6}\times1.9625\times10^{-5}\times780[/tex]

[tex]\Delta A=8.88\times10^{-7}\ m^2[/tex]

Hence, The change in the area of the circle is [tex]8.88\times10^{-7}\ m^2[/tex]

Q&A Education