Answer:
Part a)
[tex]\Delta V_{max} = 14 \times 10^3 Volts[/tex]
Part b)
[tex]C = 4.96 \times 10^{-11} farad[/tex]
Part c)
[tex]Q = 0.69 \mu C[/tex]
Part d)
[tex]E = 4.86 \times 10^{-3} J[/tex]
Explanation:
Part a)
As we know that dielectric constant of pyrex glass is 5.6 and its dielectric breakdown strength is given as
[tex]E = 14 \times 10^6 V/m[/tex]
now we have
[tex]E . d = \Delta V[/tex]
[tex](14 \times 10^6)(0.001) = \Delta V[/tex]
so we have
[tex]\Delta V_{max} = 14 \times 10^3 Volts[/tex]
Part b)
Capacitance is given as
[tex]C = \frac{k\epsilon_0 A}{d}[/tex]
[tex]C = \frac{5.6(8.85 \times 10^{-12})(10 \times 10^{-4}}{0.001}[/tex]
[tex]C = 4.96 \times 10^{-11} farad[/tex]
Part c)
Now we have
[tex]Q = C\Delta V[/tex]
[tex]Q = (4.96 \times 10^{-11})(14 \times 10^3)[/tex]
[tex]Q = 0.69 \mu C[/tex]
Part d)
[tex]Energy = \frac{1}{2}CV^2[/tex]
[tex]E = \frac{1}{2}(4.96 \times 10^{-11})(14 \times 10^3)^2[/tex]
[tex]E = 4.86 \times 10^{-3} J[/tex]