Respuesta :
The right answer for the question that is being asked and shown above is that: "A (x – 2)(x + 5)(x – 3)." If f(–5) = 0, the factors of the function f(x) = x^3 - 19x + 30 is A (x – 2)(x + 5)(x – 3), using the Remainder Theorem
If f(-5)=0, then x+5 is first factor of given polynomial.
1. Divide polynomial [tex] x^3 - 19x + 30 [/tex] by x+5:
[tex] x^3 - 19x + 30=(x+5)(x^2-5x+6) [/tex].
2. Factor the trinomial [tex] x^2-5x+6 [/tex]:
[tex] D=(-5)^2-4\cdot 6=25-24=1,\ \sqrt{D}=1,\\ \\ x_1=\dfrac{5-1}{2}=2, \ x_2=\dfrac{5+1}{2}=3,\\ \\
x^2-5x+6=(x-2)(x-3) [/tex].
3. Then
[tex] x^3 - 19x + 30=(x+5)(x-2)(x-3) [/tex].
Answer: correct choice is A.