Respuesta :
lets solve for t in the height equation:
h = 7 cos (pi/3 t)
cos (pi/3 t) = h/7
pi/3 t = cos^-1 (h/7)
t = (3/pi)Â cos^-1 (h/7)
then we substitute:
t = (3/pi)Â cos^-1 (1/7)
t = 78.1 s
t = (3/pi)Â cos^-1 (3/7)
t= 61.71
t = (3/pi)Â cos^-1 (5/7)
t = 42.41
those are the times in seconds respectively.
h = 7 cos (pi/3 t)
cos (pi/3 t) = h/7
pi/3 t = cos^-1 (h/7)
t = (3/pi)Â cos^-1 (h/7)
then we substitute:
t = (3/pi)Â cos^-1 (1/7)
t = 78.1 s
t = (3/pi)Â cos^-1 (3/7)
t= 61.71
t = (3/pi)Â cos^-1 (5/7)
t = 42.41
those are the times in seconds respectively.
Answer:
[tex]t=\dfrac{3}{\pi}\left(\cos ^{-1}\dfrac{h}{7}\right)[/tex]
Step-by-step explanation:
The given function is,
[tex]h=7\cos \left(\dfrac{\pi}{3}t\right)[/tex]
[tex]\Rightarrow \cos \left(\dfrac{\pi}{3}t\right)=\dfrac{h}{7}[/tex]
[tex]\Rightarrow \dfrac{\pi}{3}t=\cos ^{-1}\dfrac{h}{7}[/tex]
[tex]\Rightarrow t=\dfrac{3}{\pi}\left(\cos ^{-1}\dfrac{h}{7}\right)[/tex]
This is the solution of t.
Now we have to find t when h is 1 cm, 3 cm and 5 cm.
When h=1
[tex]t=\dfrac{3}{\pi}\left(\cos ^{-1}\dfrac{1}{7}\right)=78.10\ s[/tex]
When h=3
[tex]t=\dfrac{3}{\pi}\left(\cos ^{-1}\dfrac{3}{7}\right)=61.71\ s[/tex]
When h=5
[tex]t=\dfrac{3}{\pi}\left(\cos ^{-1}\dfrac{5}{7}\right)=42.41\ s[/tex]