Answer:
20. OPTION D.
12. OPTION B.
Step-by-step explanation:
20. An inverse variaton equation has this form:
[tex]y=\frac{k}{x}[/tex]
Where "k" is the constant of variation.
If Q varies inversely as the square of p, then the equation is:
[tex]Q=\frac{k}{p^2}[/tex]
Knowing that [tex]Q = 36[/tex] when [tex]p = 7[/tex], you can solve for "k" and caculate its value:
[tex]k=Qp^2\\k=(36)(7^2)\\k=1,764[/tex]
Then, to find the value of "Q" when [tex]p = 6[/tex], substitute the known values into [tex]Q=\frac{k}{p^2}[/tex]:
[tex]Q=\frac{1,764}{6^2}\\\\Q=49[/tex]
12. Given [tex](ab)^n[/tex], you get:
[tex](ab)^n=(a^1b^1)^n=a^{(1*n)}b^{(1*n)}=a^nb^n[/tex]
Then:
[tex](ab)^n=a^nb^n[/tex]
This matches with the option B.