Please need help in this 2 math questions
20. Q varies inversely as the square of p, and Q = 36 when p = 7. Find Q when p = 6.

A. Q = 6

B. Q = 42

C. Q = 176
D. Q = 49
12. Complete the property of exponents. (ab)n = _______

A. an + bn

B. anbn

C. abn

D. an – bn





Respuesta :

Answer:

20. OPTION D.

12. OPTION B.

Step-by-step explanation:

20. An inverse variaton equation has this form:

[tex]y=\frac{k}{x}[/tex]

Where "k" is the constant of variation.

If  Q varies inversely as the square of p, then the equation is:

[tex]Q=\frac{k}{p^2}[/tex]

Knowing that [tex]Q = 36[/tex] when [tex]p = 7[/tex], you can solve for "k" and caculate its value:

[tex]k=Qp^2\\k=(36)(7^2)\\k=1,764[/tex]

Then, to find the value of "Q" when [tex]p = 6[/tex], substitute the known  values into  [tex]Q=\frac{k}{p^2}[/tex]:

[tex]Q=\frac{1,764}{6^2}\\\\Q=49[/tex]

12. Given [tex](ab)^n[/tex], you get:

[tex](ab)^n=(a^1b^1)^n=a^{(1*n)}b^{(1*n)}=a^nb^n[/tex]

Then:

 [tex](ab)^n=a^nb^n[/tex]

This matches with the option B.

Q&A Education