Respuesta :

ANSWER

Zero(s)

[tex]x = 0[/tex]

The function is discontinuous at

[tex]x = - 3 \:and \: x = 3[/tex]

EXPLANATION

The given rational function is

[tex] y = \frac{3x}{ {x}^{2} - 9 } [/tex]

For this function to be equal to zero, then the numerator must be zero.

Equate the numerator to zero and solve for x.

[tex]3x = 0[/tex]

This implies that

[tex]x = \frac{0}{3} = 0[/tex]

The rational function is discontinuous when the denominator is equal to zero.

[tex] {x}^{2} - 9 = 0[/tex]

Solve this quadratic equation using the square root method or otherwise.

[tex] {x}^{2} = \pm \sqrt{9} [/tex]

[tex]{x} = \pm 3[/tex]

There is discontinuity at

[tex]x = - 3 \:and \: x = 3[/tex]

Q&A Education