Respuesta :

ANSWER

See explanation

EXPLANATION

The standard form of a quadratic equation is:

[tex]y = a {x}^{2} + bx + c[/tex]

To convert this function to standard form, you follow the steps below:

  • Factor 'a' from the variable terms
  • Add and subtract the square of half the coefficient of x.
  • Factor the perfect squares
  • Simplify the constant terms to get the vertex form as
  • [tex]y = a {(x - h)}^{2} + k[/tex]

For example:

Given the standard form:

[tex]y = 2 {x}^{2} + 12x + 10[/tex]

Factor 2 from the variable terms

[tex]y = 2 {(x}^{2} + 6x) + 10[/tex]

Add and subtract the square of 3.

[tex]y = 2 {(x}^{2} + 6x + 9 - 9) + 10[/tex]

[tex]y = 2 {(x}^{2} + 6x + 9) + 2( - 9) + 10[/tex]

Factor the perfect square an simplify

[tex]y = 2 ({x + 3)}^{2} - 8[/tex]

This is the vertex form

Q&A Education