For ΔABC, ∠A = 4x + 7, ∠B = 2x + 3, and ∠C = 6x - 10. If ΔABC undergoes a dilation by a scale factor of 2 to create ΔA'B'C' with ∠A' = 5x - 8, ∠B' = 3x - 12, and ∠C' = 7x - 25, which confirms that ΔABC∼ΔA'B'C by the AA criterion?

Respuesta :

DeanR

Bizzare problem.  What are the choices?

The triangle angles add to 180.

4x + 7 + 2x +3 + 6x - 10 = 180

12x = 180

x = 15

Dilation doesn't change the angles so we must have

4x + 7 = 5x - 8  and 2x + 3 = 3x - 12 and 6x - 10 = 7x - 25

Fortunately x=15 is the solution to all of these so it's consistent.  

Answer:

The value of x is 15.

Step-by-step explanation:

It is given that in ΔABC, ∠A = 4x + 7, ∠B = 2x + 3, and ∠C = 6x - 10.

According to angle sum property of triangle, the sum of all interior angles of a triangle is 180°.

In ΔABC,

[tex]\angle A+\angle B+\angle C=180[/tex]

[tex](4x+7)+(2x+3)+(6x-10)=180[/tex]

Combine like terms.

[tex](4x+2x+6x)+(7+3-10)=180[/tex]

[tex]12x=180[/tex]

Divide both sides by 12.

[tex]x=15[/tex]

The value of x is 15.

[tex]\angle A=4x+7\Rightarrow 4(15)+7=67^{\circ}[/tex]

[tex]\angle B=2x+3\Rightarrow 2(15)+3=33^{\circ}[/tex]

[tex]\angle C=6x-10\Rightarrow 6(15)-10=80^{\circ}[/tex]

[tex]\angle A'=5x-8\Rightarrow 5(15)-8=67^{\circ}[/tex]

[tex]\angle B'=3x-12\Rightarrow 3(15)-12=33^{\circ}[/tex]

[tex]\angle C'=7x-25\Rightarrow 7(15)-25=80^{\circ}[/tex]

We get

[tex]\angle A\cong \angle A'[/tex]

[tex]\angle B\cong \angle B'[/tex]

Two corresponding angles of triangles are congruent. By AA criterion

[tex]\triangle ABC\cong \triangle A'B'C'[/tex]

Hence proved.

Q&A Education