The figure is made up of a cylinder, a cone, and a half sphere. The radius of the half sphere is 3 inches. What is the volume of the composite figure?
Given.
Radius of the Half sphere is 3 inches.
From the figure;
Radius of half sphere= Radius of cylinder= Radius of cone=3inches
Height of cone= 4inches.
Height of cylinder=6inches.
Volume of cone=(πr²h)/3
=(π3²×4)/3
=(12π) inch³
volume of cylinder= πr²h=π3²6=54π inch³
Volume of half sphere= (4/3) π r³=π(4×3³)/3 (1/2)=π×4×9/2=18π inch³
Total area of Composite figure=(12π +54π +18π) inch³
=84π inch³
=(84)× 22/7inch³
=12×22 inch³
=264inch³
Hope it helps...
Regards;
Leukonov/Olegion.
Answer:
The volume of the composite figure is 84π ≅ 263.89 inches³
Step-by-step explanation:
Lets revise the rules of the volume of some figures
- The composite figure consists of :
# Half sphere with radius 3 inches
# Cylinder with radius 3 inches and height 6 inches
# Cone with radius 3 inches and height 4 inches
- The volume of the sphere is 4/3 π r³
∴ The volume of the half sphere = 1/2 × 4/3 π r³ = 2/3 π r³
- The volume of the cylinder is π r² h
- The volume of the cone is 1/3 π r² h
* Now lets solve the problem
- The volume of the half sphere
∵ The radius of the half sphere = 3 inches
∵ The volume of it = 2/3 π r³
∴ The volume = 2/3 × π × (3)³ = 18π inches³
- The volume of the cylinder
∵ The radius of the cylinder = 3 inches
∵ The height of the cylinder = 6 inches
∵ The volume of it = π r² h
∴ Its volume = π × (3)² × 6 = 54π inches³
- The volume of the cone
∵ The radius of the cone = 3 inches
∵ The height of the cone = 4 inches
∵ The volume of it = 1/3 π r² h
∴ Its volume = 1/3 π × (3)² × 4 = 12π inches³
- Add all the volumes to find the volume of the composite figure
∴ The volume = 18π + 54π + 12π = 84π = 263.89 inches³
* The volume of the composite figure is 84π ≅ 263.89 inches³