4. I need help with question in the attached picture!
ANSWER
D. 13
EXPLANATION
We have
[tex]f(x) = \frac{2x + 1}{x - 4} [/tex]
To find
[tex] {f}^{ - 1} (3)[/tex]
means we want to find an x-value whose image is 3.
[tex]\frac{2x + 1}{x - 4} = 3[/tex]
We cross multiply,
[tex]2x + 1 = 3(x - 4)[/tex]
Expand:
[tex]2x + 1 = 3x - 12[/tex]
Combine like terms,
[tex]3x - 2x = 12 + 1[/tex]
[tex]x = 13[/tex]
[tex] \therefore{f}^{ - 1} (3)= 13[/tex]
Answer:
Option D is correct.
Step-by-step explanation:
[tex]f(x)= \frac{2x+1}{x-4} \,\,find \,\,value\,\,of\,\, f^{-1}(3)[/tex]
We know that f(a) =b ⇔ f^-1 (b) =a
Using this,
We are given [tex]f^{-1}(3)=x => f(x)=3[/tex]
and [tex]f(x)= \frac{2x+2}{x-4}[/tex]
putting value of f(x)
[tex]3= \frac{2x+1}{x-4}\\3(x-4) = 2x+1\\3x-12 = 2x+1\\Adding\,\,like\,\,terms\,\,\\3x-2x = 12+1\\x=13\\So, f^{-1}(3) = 13[/tex]
Option D is correct.