) Set up a double integral for calculating the flux of F=3xi+yj+zk through the part of the surface z=−5x−2y+2 above the triangle in the xy-plane with vertices (0,0), (0,2), and (2,0), oriented upward. Instructions: Please enter the integrand in the first answer box. Depending on the order of integration you choose, enter dx and dy in either order into the second and third answer boxes with only one dx or dy in each box. Then, enter the limits of integration and evaluate the integral to find the flux.

Respuesta :

The surface (call it [tex]S[/tex]) is a triangle with vertices at the points

[tex]x=0,y=0\implies z=2\implies(0,0,2)[/tex]

[tex]x=0,y=2\implies z=-2\implies(0,2,-2)[/tex]

[tex]x=2,y=0\implies z=-8\implies(2,0,-8)[/tex]

Parameterize [tex]S[/tex] by

[tex]\vec s(u,v)=(1-v)(2,0,-8)+v\bigg((1-u)(0,2,-2)+u(0,0,2)\bigg)=(2-2v,2v-2uv,-8+6v+4uv)[/tex]

with [tex]0\le u\le1[/tex] and [tex]0\le v\le1[/tex]. Take the normal vector to [tex]S[/tex] to be

[tex]\vec s_v\times\vec s_u=(20v,8v,4v)[/tex]

Then the flux of [tex]\vec F[/tex] across [tex]S[/tex] is

[tex]\displaystyle\iint_S\vec F(x,y,z)\cdot\mathrm d\vec S=\int_0^1\int_0^1\vec F(x(u,v),y(u,v),z(u,v))\cdot(\vec s_v\times\vec s_u)\,\mathrm du\,\mathrm dv[/tex]

[tex]=\displaystyle\int_0^1\int_0^1(6-6v,2v-2uv,-8+6v+4uv)\cdot(20v,8v,4v)\,\mathrm du\,\mathrm dv[/tex]

[tex]=\displaystyle8\int_0^1\int_0^1(11v-10v^2)\,\mathrm du\,\mathrm dv=\boxed{\frac{52}3}[/tex]

Q&A Education