Respuesta :
ANSWER
[tex]a = - 7[/tex]
[tex]b = 1[/tex]
[tex]c = 4[/tex]
EXPLANATION
The given quadratic equation is:
[tex]0 = 4 - 7 {x}^{2} + x[/tex]
We rewrite in the standard quadratic equation form to obtain,
[tex] - 7 {x}^{2} + x + 4 = 0[/tex]
Comparing this to the general standard quadratic equation.
[tex]a {x}^{2} + bx + c = 0[/tex]
We have my
[tex]a = - 7[/tex]
[tex]b = 1[/tex]
[tex]c = 4[/tex]
Quadratic equations can be defined as a polynomial equation of a second degree, which implies that it comprises a minimum of one term that is squared.
The coefficients are a = -7, b = 1 and constant term c = 4.
Given
The given quadratic equation is;
[tex]\rm -7x^2+x+4=0[/tex]
What is a quadratic equation?
Quadratic equations can be defined as a polynomial equation of a second degree, which implies that it comprises a minimum of one term that is squared.
The general form of the quadratic equation is;
[tex]\rm ax^2+ bx + c = 0[/tex]
Where x is an unknown variable and a, b, c are numerical coefficients.
On comparing the given equation with the quadratic equation the values of coefficient and constant terms are;
[tex]\rm ax^2+ bx + c = 0[/tex]
[tex]\rm -7x^2+x+4=0[/tex]
Here, a = -7, b = 1, c = 4
Hence, the coefficients are a = -7, b = 1 and constant term c = 4.
To know more about the Quadratic equation click the link given below.
https://brainly.com/question/11443935