Respuesta :

Answer:

Part 1) [tex]z=4\sqrt{3}\ units[/tex]

Part 2) [tex]y=4\sqrt{2}\ units[/tex]

Part 3) [tex]x=4\sqrt{6}\ units[/tex]

Step-by-step explanation:

see the attached figure with letters to better understand the problem

step 1

Find the value of z

In the right triangle DBC

[tex]cos(C)=\frac{4}{z}[/tex] ----> equation A

In the right triangle ABC

[tex]cos(C)=\frac{z}{12}[/tex] ----> equation B

equate equation A and equation B

[tex]\frac{4}{z}=\frac{z}{12}[/tex]

[tex]z^{2}=48[/tex]

[tex]z=4\sqrt{3}\ units[/tex]

step 2

In the right triangle DBC

Applying the Pythagoras Theorem

[tex]z^{2}=y^{2}+4^{2}[/tex]

we have

[tex]z=4\sqrt{3}\ units[/tex]

substitute

[tex](4\sqrt{3})^{2}=y^{2}+4^{2}[/tex]

[tex]48=y^{2}+16[/tex]

[tex]y^{2}=48-16[/tex]

[tex]y^{2}=32[/tex]

[tex]y=4\sqrt{2}\ units[/tex]

step 3

Find the value of x

In the right triangle ABC

Applying the Pythagoras Theorem

[tex]12^{2}=x^{2}+z^{2}[/tex]

we have

[tex]z=4\sqrt{3}\ units[/tex]

substitute

[tex]12^{2}=x^{2}+(4\sqrt{3})^{2}[/tex]

[tex]144=x^{2}+48[/tex]

[tex]x^{2}=144-48[/tex]

[tex]x^{2}=96[/tex]

[tex]x=4\sqrt{6}\ units[/tex]

Ver imagen calculista

Answer:

B

Step-by-step explanation:

Test Yourself

Q&A Education