Respuesta :

Wouldn’t it be 36.7 because that’s the arch am I right?

Answer:

The measure of arc CD is 114.6°.

Step-by-step explanation:

Let the center of the circle be O and OP is perpendicular to CD at point point P.

The perpendicular line from the center of circle divide each chord in two equal parts. so, CP=DP.

[tex]CP=\frac{CD}{2}=\frac{36.7}{2}=18.35[/tex]

In a right angles triangle,

[tex]\sin\theta =\frac{opposite}{hypotenuse}[/tex]

In a right angles triangle OPC,

[tex]\sin\angle POC =\frac{18.35}{21.8}[/tex]

[tex]\angle POC =\sin^{-1} (\frac{18.35}{21.8})[/tex]

[tex]\angle POC \approx 57.3[/tex]

In triangle OPC and OPD,

[tex]OC=OD[/tex]                  (Radius)

[tex]OP=OP[/tex]                  (Reflexive property)

[tex]CP=DP[/tex]                   (Altitude on chord from center)

By SSS postulate

[tex]\triangle OPC\cong \triangle OPD[/tex]

[tex]\angle POC\cong \angle POD[/tex]                      (CPCTC)

[tex]\angle POC=\angle POD[/tex]

The measure of angle COD is

[tex]\angle COD=\angle POC+\angle POD[/tex]

[tex]\angle COD=2\angle POC[/tex]

[tex]\angle COD=2(57.3)[/tex]

[tex]\angle COD=114.6[/tex]

Therefore the measure of arc CD is 114.6°.

Ver imagen erinna
Q&A Education