Answer:
[tex]\large\boxed{Q\#1.\ A)\ \dfrac{8}{3}x+6}\\\boxed{Q\#2.\ A)\ \dfrac{1}{3}(p+45)}[/tex]
Step-by-step explanation:
[tex]Q\#1:\\\\\dfrac{2}{3}(4x+9)\qquad\text{use the distributive property}\\\\=\left(\dfrac{2}{3}\right)(4x)+\left(\dfrac{2}{3}\right)(9)=\dfrac{8}{3}x+(2)(3)=\dfrac{8}{3}x+6\\\\Q\#2:\\\\\dfrac{1}{3}p+15=\dfrac{1}{3}p+\dfrac{1}{3}\cdot(3)(15)=\dfrac{1}{3}p+\dfrac{1}{3}\cdot45=\dfrac{1}{3}(p+45)[/tex]