What is the solution?
Answer: OPTION A
Step-by-step explanation:
Apply the Quadratic formula, which is:
[tex]x=\frac{-b\±\sqrt{b^2-4ac}}{2a}[/tex]
In this case:
[tex]a=1\\b=-6\\c=58[/tex]
Then, you must susbtitute these values into the quadratic formula, as shown below:
[tex]x=\frac{-(-6)\±\sqrt{(-6)^2-4(1)(58)}}{2*1}[/tex]
[tex]x=\frac{6\±\sqrt{-196}}{2}[/tex]
Keep on mind that [tex]i=\sqrt{-1}[/tex], then you can rewrite it as following:
[tex]x=\frac{6\±14i}{2}\\\\\\x=\frac{2(3\±7i)}{2}\\\\x=3\±7i\\\\x_1=3+7i\\x_2=3-7i[/tex]
Answer:
A. {[tex]3+7i,3-7i[/tex]}
Step-by-step explanation:
The given equation is [tex]x^2-6x+58=0[/tex]
Use the quadratic formula with a=1,b=-6 and c=58
Recall the quadratic formula;
[tex]x=\frac{-b\pm\sqrt{b^2-4ac} }{2a}[/tex]
We substitute the given values to get;
[tex]x=\frac{--6\pm \sqrt{(-6)^2-4(1)(58)} }{2(1)}[/tex]
[tex]x=\frac{6\pm \sqrt{36-232} }{2}[/tex]
[tex]x=\frac{6\pm \sqrt{-196} }{2}[/tex]
Recall that;
[tex]\sqrt{-1}=i[/tex]
[tex]x=\frac{6\pm 14i}{2}[/tex]
[tex]x=3\pm 7i[/tex]
[tex]x=3+7i[/tex] or [tex]x=3-7i[/tex]