Respuesta :

Answer: OPTION A

Step-by-step explanation:

Apply the Quadratic formula, which is:

[tex]x=\frac{-b\±\sqrt{b^2-4ac}}{2a}[/tex]

In this case:

[tex]a=1\\b=-6\\c=58[/tex]

Then, you must susbtitute these values into the quadratic formula, as shown below:

[tex]x=\frac{-(-6)\±\sqrt{(-6)^2-4(1)(58)}}{2*1}[/tex]

[tex]x=\frac{6\±\sqrt{-196}}{2}[/tex]

Keep on mind that [tex]i=\sqrt{-1}[/tex], then you can rewrite it as following:

[tex]x=\frac{6\±14i}{2}\\\\\\x=\frac{2(3\±7i)}{2}\\\\x=3\±7i\\\\x_1=3+7i\\x_2=3-7i[/tex]

Answer:

A. {[tex]3+7i,3-7i[/tex]}

Step-by-step explanation:

The given equation  is  [tex]x^2-6x+58=0[/tex]

Use the quadratic formula with a=1,b=-6 and c=58

Recall the quadratic formula;

[tex]x=\frac{-b\pm\sqrt{b^2-4ac} }{2a}[/tex]

We substitute the given values to get;

[tex]x=\frac{--6\pm \sqrt{(-6)^2-4(1)(58)} }{2(1)}[/tex]

[tex]x=\frac{6\pm \sqrt{36-232} }{2}[/tex]

[tex]x=\frac{6\pm \sqrt{-196} }{2}[/tex]

Recall that;

[tex]\sqrt{-1}=i[/tex]

[tex]x=\frac{6\pm 14i}{2}[/tex]

[tex]x=3\pm 7i[/tex]

[tex]x=3+7i[/tex] or [tex]x=3-7i[/tex]

Q&A Education