Respuesta :

Answer:

The third term of the expansion [tex](a+b)^n[/tex] is [tex]C(n,2)\cdot a^{n-2}\cdot b^{2}[/tex].

Step-by-step explanation:

According to the binomial expansion,

[tex](a+b)^n=C(n,0)a^{n}+C(n,1)a^{n-1}b+...+C(n,n)b^n[/tex]

So, the rth term of this expansion is

[tex]C(n,r-1)a^{n-r+1}b^{(r-1)}[/tex]

We have to find the third term of the expansion [tex](a+b)^n[/tex] is

[tex]C(n,3-1)a^{n-3+1}b^{(3-1)}[/tex]

[tex]C(n,2)\cdot a^{n-2}\cdot b^{2}[/tex]

Therefore the third term of the expansion [tex](a+b)^n[/tex] is [tex]C(n,2)\cdot a^{n-2}\cdot b^{2}[/tex].

Answer:

C( n, 2) a^n -2b 2

Step-by-step explanation:

Q&A Education