Respuesta :

Answer:

It is B.

Step-by-step explanation:

f(x) = 2(3^x) + 4

As x approaches negative  infinity  2(3^x) approaches zero and f(x) approaches 4.

Answer:

B.[tex]f(x)=2(3^x)+4[/tex]

Step-by-step explanation:

We have to find that which graph has horizontal asymptote at 4

We know that to find the horizontal asymptote , we simply evaluate the limit of the function as it approaches to infinity or it approaches to negative infinity.

A.[tex]f(x)=2x-4[/tex]

[tex]\lim_{x\rightarrow \infty}(2x-4)=\infty[/tex]

[tex]\lim_{x\rightarrow -\infty}(2x-4)=-\infty[/tex]

Limit of function does not exits, so function have not horizontal asymptote.

B.[tex]f(x)=2(3^x)+4[/tex]

[tex]\lim_{x\rightarrow \infty}(2(3^x)+4)=\infty[/tex]

[tex]3^{\infty}=\infty [/tex]

[tex]\lim_{x\rightarrow -\infty}(2(3^x)+4)=4[/tex]

Because [tex]3^{-\infty}=0[/tex]

Hence, function have horizontal asymptote at 4.

C.[tex]f(x)=-3x+4[/tex]

[tex]\lim_{x\rightarrow \infty}(-3x+4)=\infty[/tex]

[tex]\lim_{x\rightarrow -\infty}(-3x+4)=-\infty[/tex]

Hence, function have not horizontal asymptote.

D.[tex]f(x)=3(2^x)-4[/tex]

[tex]\lim_{x\rightarrow \infty}(3(2^x)-4)=\infty[/tex]

Because [tex]2^{\infty}=\infty[/tex]

[tex]\lim_{x\rightarrow -\infty}(3(2^x)-4)=-4[/tex]

[tex]2^{-\infty}=0[/tex]

Hence, function have horizontal asymptote at -4.

Therefore, option B is true.

Q&A Education