Respuesta :
Answer:
A) 0.5564; B) 0.8962; C) Choice D. Part (a) because the seat performance for a single pilot is more important.
Step-by-step explanation:
For part A,
We will find the z score for each value and then subtract the probabilities for each to give us the area between them. We use the z score for an individual value:
[tex]z=\frac{X-\mu}{\sigma}[/tex]
Our first X is 130 and our second X is 191. Our mean, μ, is 136 and our standard deviation, σ, is 28.5:
[tex]z=\frac{130-136}{28.5}=\frac{-6}{28.5}\approx -0.21\\\\z=\frac{191-136}{28.5}=\frac{55}{28.5}\approx 1.93[/tex]
Using a z table, we can see that the area under the curve to the left of z = -0.21 is 0.4168; the area under the curve to the left of z = 1.93 is 0.9732. This means the area between them is
0.9732-0.4168 = 0.5564.
For part B,
We will find the z score for each value again and subtract them; however, since we have a sample we will use the z score for the mean of a sample:
[tex]z=\frac{\bar{X}-\mu}{\sigma \div \sqrt{n}}[/tex]
Our first X-bar is 130 and our second is 191; our mean is still 136; our standard deviation is still 28.5; and our sample size, n, is 36:
[tex]z=\frac{130-136}{28.5\div \sqrt{36}}=\frac{-6}{28.5\div 6}\approx -1.26\\\\z=\frac{191-136}{28.5\div \sqrt{36}}=\frac{55}{28.5\div 6}\approx 11.58[/tex]
The area under the curve to the left of -1.26 is 0.1038; the area under the curve to the left of 11.58 is 1.00:
1.00-0.1038 = 0.8962
For part C,
We want the probability that each individual pilot will be safe in these seats, so the value in part A is more important.