Answer:
[tex]1.66\cdot 10^5 Pa[/tex]
Explanation:
The ideal gas equation states that:
[tex]pV=nRT[/tex]
where
p is the gas pressure
V is the gas volume
n is the number of moles of the gas
R is the gas constant
T is the absolute temperature of the gas
For the gas in this problem, we have:
[tex]n = 3 mol[/tex] (number of moles)
[tex]V=60 L=60\cdot 10^{-3} m^3[/tex] (gas volume)
[tex]T=400 K[/tex]
So we can solve the formula for p, the pressure of the gas:
[tex]p=\frac{nRT}{V}=\frac{(3 mol)(8.314 J/mol K)(400 K)}{60\cdot 10^{-3} m^3}=1.66\cdot 10^5 Pa[/tex]