URGENT!!! Which expression is equivalent to cos(2α)cosα−sinα for all values of α for which cos(2α)cosα−sinα is defined?
Select the correct answer below:


2

cosα+sinα

cot2α−2cos2α

2tanα1+tanα

2sinα1−tan2α

Respuesta :

ANSWER

[tex] \cos( \alpha ) + \sin( \alpha ) [/tex]

EXPLANATION

The given expression is

[tex] \frac{ \cos(2 \alpha ) }{ \cos( \alpha ) - \sin( \alpha ) } [/tex]

Recall and use the double angle identity,

[tex] \cos(2 \alpha ) = { \cos}^{2} \alpha - { \sin}^{2} \alpha [/tex]

This implies that,

[tex]\frac{ \cos(2 \alpha ) }{ \cos( \alpha ) - \sin( \alpha ) } = \frac{ \ { \cos}^{2} \alpha - { \sin}^{2} \alpha }{ \cos( \alpha ) - \sin( \alpha ) } [/tex]

Recall again that: a²-b²=(a-b)(a+b)

We use difference of two squares to obtain,

[tex]\frac{ \cos(2 \alpha ) }{ \cos( \alpha ) - \sin( \alpha ) } = \frac{ (\ { \cos}\alpha - { \sin}\alpha )(\ { \cos}\alpha + { \sin}\alpha)}{ \cos( \alpha ) - \sin( \alpha ) } [/tex]

We cancel out the common factors to get,

[tex]\frac{ \cos(2 \alpha ) }{ \cos( \alpha ) - \sin( \alpha ) } = { \cos}\alpha + { \sin}\alpha[/tex]

Q&A Education