bm42400
contestada

Q5: Identify the graph of the equation and write an equation of the translated or rotated graph in general form.

Q5 Identify the graph of the equation and write an equation of the translated or rotated graph in general form class=

Respuesta :

Answer:

[tex]d.\:ellipse;\:3x^2+y^2+6x-6y+3=0[/tex].

Step-by-step explanation:

The given conic has equation;

[tex]3x^2+y^2=9[/tex]

Divide through by 9.

[tex]\Rightarrow \frac{3x^2}{9}+\frac{y^2}{9}=\frac{9}{9}[/tex]

[tex]\Rightarrow \frac{x^2}{3}+\frac{y^2}{9}=1[/tex].

This is an ellipse centered at the origin;

This ellipse has been translated so that the center is now at;

[tex](-1,3)[/tex]

The translated ellipse has equation;

[tex]\frac{(x+1)^2}{3}+\frac{(y-3)^2}{9}=1[/tex].

Clear the fraction;

[tex]3(x+1)^2+(y-3)^2=9[/tex].

Expand;

[tex]3(x^2+2x+1)+(y^2-6y+9)=9[/tex].

[tex]3x^2+6x+3+y^2-6y+9=9[/tex].

Write in general form;

[tex]3x^2+y^2+6x-6y+9-9+3=0[/tex].

[tex]3x^2+y^2+6x-6y+3=0[/tex].

The correct choice is D

Answer:

d.

ellipse;

Step-by-step explanation:

Q&A Education