bm42400
contestada

Q3: Identify the graph of the equation and write and equation of the translated or rotated graph in general form. (Picture Provided Below)

Q3 Identify the graph of the equation and write and equation of the translated or rotated graph in general form Picture Provided Below class=

Respuesta :

Answer:

b. circle; [tex]2(x')^2+2(y')^2-5x'-5\sqrt{3}y'-6 =0[/tex]

Step-by-step explanation:

The given conic has equation;

[tex]x^2-5x+y^2=3[/tex]

We complete the square to obtain;

[tex](x-\frac{5}{2})^2+(y-0)^2=\frac{37}{4}[/tex]

This is a circle with center;

[tex](\frac{5}{2},0)[/tex]

This implies that;

[tex]x=\frac{5}{2},y=0[/tex]

When the circle is rotated through an angle of [tex]\theta=\frac{\pi}{3}[/tex],

The new center is obtained using;

[tex]x'=x\cos(\theta)+y\sin(\theta)[/tex] and [tex]y'=-x\sin(\theta)+y\cos(\theta)[/tex]

We plug in the given angle with x and y values to get;

[tex]x'=(\frac{5}{2})\cos(\frac{\pi}{3})+(0)\sin(\frac{\pi}{3})[/tex] and [tex]y'=--(\frac{5}{2})\sin(\frac{\pi}{3})+(0)\cos(\frac{\pi}{3})[/tex]

This gives us;

[tex]x'=\frac{5}{4} ,y'=\frac{5\sqrt{3} }{4}[/tex]

The equation of the rotated circle is;

[tex](x'-\frac{5}{4})^2+(y'-\frac{5\sqrt{3} }{4})^2=\frac{37}{4}[/tex]

Expand;

[tex](x')^2+(y')^2-\frac{5\sqrt{3} }{2}y'-\frac{5}{2}x'+\frac{25}{4} =\frac{37}{4}[/tex]

Multiply through by 4; to get

[tex]4(x')^2+4(y')^2-10\sqrt{3}y'-10x'+25 =37[/tex]

Write in general form;

[tex]4(x')^2+4(y')^2-10x'-10\sqrt{3}y'-12 =0[/tex]

Divide through by 2.

[tex]2(x')^2+2(y')^2-5x'-5\sqrt{3}y'-6 =0[/tex]

Q&A Education