Respuesta :

ANSWER

[tex] \cos(x) \cot ^{2} (x) [/tex]

EXPLANATION

The given expression is;

[tex] \cot^{2} (x) \sec(x) - \cos(x) [/tex]

Change everything to

[tex] \sin(x) [/tex]

and

[tex] \cos(x) [/tex]

This implies that,

[tex] \frac{ \cos^{2} (x) }{ \sin^{2} (x) } \times ( \frac{1}{ \cos(x) } )- \cos(x) [/tex]

Cancel the common factors,

[tex] \frac{ \cos(x) }{ \sin^{2} (x) } \times ( \frac{1}{1} )- \cos(x) [/tex]

[tex] \frac{ \cos(x) }{ \sin^{2} (x) }- \cos(x) [/tex]

[tex] \frac{ \cos(x) - \sin ^{2} (x) \cos(x) }{ \sin^{2} (x) } [/tex]

[tex] = \frac{ \cos(x)(1 - \sin ^{2} (x) ) }{ \sin^{2} (x) } [/tex]

[tex] = \frac{ \cos(x)(\cos^{2} (x) ) }{ \sin^{2} (x) } [/tex]

[tex] = \cos(x) \cot^{2} (x) [/tex]

Answer: trigonometric identities

1 C sin^2

2 B csc x(csc x-1)

3 D 1-sin theta/ csc theta

4 D tan x sin x

5 A cos x cot2 x

Q&A Education