challenge: A 3 kg model airplane is traveling at a speed of 33 m/s.. The operator then increases the speed up to 45 m/s in 2 seconds. How much force did the engine need in order to make this change?

Respuesta :

The average force exerted on an object is given by the equation:

F = Δp/Δt = mΔv/Δt = m(Vf-Vi)/Δt

F is the average force, m is the object's mass, Vi is the object's initial velocity, Vf is the object's final velocity, and Δt is the time elapsed.

Given values:

m = 3kg

Vi = 33m/s

Vf = 45m/s

Δt = 2s

Plug in the values and solve for F:

F = 3(45-33)/2

F = 18N

Answer:

The force the engine needs in order to make this change is 18N

According to Newton's second law of motion: the rate of change of momentum is directly proportional to its applied force and takes place in the direction of that force.

f ∝ m ( v - u) / t

Let:

mass = 3kg

Initial velocity = 33 m/s

Final velocity = 45 m/s

Time = 2 seconds

Using the below formula

[tex]f = \frac{m (v - u)}{t}[/tex]

F = 3 (45 - 33) / 2

F = 3(12)/2

F = 36/2

F = 18N

Hence, the force the engine needs in order to make this change is 18N

Read more about Newton's law of motion

https://brainly.com/question/3715235

Q&A Education