Answer:
[tex]7.6\cdot 10^{-4} C/m^3[/tex]
Explanation:
The volume charge density is given by:
[tex]\rho = \frac{q}{V}[/tex]
where
q is the charge
V is the volume of the sphere
In this problem, we have:
[tex]q=6.3\cdot 10^{-8} C[/tex] is the charge
[tex]r=2.7 cm=0.027 m[/tex] is the radius of the sphere, so its volume is
[tex]V=\frac{4}{3}\pi r^3 = \frac{4}{3}\pi (0.027 m)^3=8.24\cdot 10^{-5} m^3[/tex]
So, the volume charge density is
[tex]\rho = \frac{6.3\cdot 10^{-8} C}{8.24\cdot 10^{-5} m^3}=7.6\cdot 10^{-4} C/m^3[/tex]