Respuesta :

Answer:

The coordinates of the focus of the parabola are (-6,6)

Step-by-step explanation:

we know that

The equation of a vertical parabola in vertex form is equal to

[tex]y=a(x-h)^{2}+k[/tex]

where

(h,k) is the vertex

(h,k+(1/4a)) is the focus

in this problem we have

[tex]y=-\frac{1}{12}x^{2}-x+6[/tex]

Convert to vertex form

[tex]y-6=-\frac{1}{12}x^{2}-x[/tex]

[tex]y-6=-\frac{1}{12}(x^{2}+12x)[/tex]

[tex]y-6-3=-\frac{1}{12}(x^{2}+12x+36)[/tex]

[tex]y-9=-\frac{1}{12}(x+6)^{2}[/tex]

[tex]y=-\frac{1}{12}(x+6)^{2}+9[/tex] ------> equation in vertex form

The vertex is the point (-6,9)

[tex]a=-\frac{1}{12}[/tex]

The focus is (h,k+(1/4a)) ------> (-6,9+(1/4(-1/12))-----> (-6,9-3)----> (-6,6)

Q&A Education