Which identity needs to be used to prove tan (pi/2 - x) = cot x
Answer:
The answer is tanФ = sinФ/cosФ ⇒ the second answer
Step-by-step explanation:
∵ tanx = sinx/cosx , ∵ cotx = cosx/sinx
∵ tan(π/2 - x) = [tex]\frac{sin\frac{\pi }{2}-x }{cos\frac{\pi }{2}-x }[/tex]
∵ sin(π/2 - x) = cosx ⇒ complementary angles (sum of them = π/2)
∵ cos(π/2 - x) = sinx
∴ tan(π/2 - x) = [tex]\frac{cosx}{sinx}[/tex] = cotx
∴ The identity is tanФ = sinФ/cosФ