Respuesta :

Answer:

The answer is  tanФ = sinФ/cosФ ⇒ the second answer

Step-by-step explanation:

∵ tanx = sinx/cosx , ∵ cotx = cosx/sinx

∵ tan(π/2 - x) = [tex]\frac{sin\frac{\pi }{2}-x }{cos\frac{\pi }{2}-x }[/tex]

∵ sin(π/2 - x) = cosx ⇒ complementary angles (sum of them = π/2)

∵ cos(π/2 - x) = sinx

∴ tan(π/2 - x) = [tex]\frac{cosx}{sinx}[/tex] = cotx

∴ The identity is tanФ = sinФ/cosФ

Q&A Education