If titanium is irradiated with light of 233 nm, what is the maximum possible kinetic energy of the emitted electrons?What is the maximum number of electrons that can be freed by a burst of light whose total energy is 2.00 μJ.

Respuesta :

Answer;

= 2.346 x 10^12 electrons.

Explanation and solution;

The energy of each photon can be obtained using Planck's equation:  

E = hν = (hc)/λ

   = (6.626 x 10^-34 J s)(2.9979 x 10^8 m/s) / (233 x 10^-9 m)

   = 8.525 x 10^-19 Joules

The maximum kinetic energy for each freed electron will be;

 =  8.525 x 10-19 J - 6.94 x 10^-19 J

  = 1.585 x 10^-19 J

The number of 233 nm photons in the 2.00 x 10-6 J burst of light will be;

= 2.00 x 10^-6 J / 8.525 x 10^-19 J

= 2.346 x 10^12 photons.

Each photon can free at most one electron, so the maximum number of freed electrons will be 2.346 x 10^12 electrons.

The maximum possible kinetic energy of the emitted electrons is 2.379 x 10⁻¹⁹ J.

The maximum number of electron that can be ejected is 1.248 x 10¹³ electrons.

The given parameters;

  • wavelength of the light, λ = 233 nm
  • work function of titanium, φ = 3.84 ev

The maximum possible kinetic energy of the emitted electrons is calculated by applying Einstein photoelectric equation as follows;

[tex]E = K.E_{max} + \ \Phi[/tex]

where;

  • E is the energy of the incident light

E = hf

[tex]E = \frac{hc}{\lambda} \\\\E = \frac{(6.626\times 10^{-34})\times (3\times 10^8)}{233\times 10^{-9}} \\\\E = 8.531 \times 10^{-19} \ J[/tex]

The maximum possible kinetic energy of the emitted electrons;

[tex]K.E_{max}= E \ - \ \Phi\\\\K.E_{max}= (8.531\times 10^{-19}) \ - \ (3.84\times 1.602 \times 10^{-19})\\\\K.E_{max}= 2.379 \times 10^{-19} \ J[/tex]

The maximum number of electron that can be ejected when a light of 2 μJ incident on a metal.

1.602 x 10⁻¹⁹ J ------------------------ 1 electron

2 x 10⁻⁶ J ------------------------------- ?

[tex]n = \frac{2\times 10^{-6} }{1.602\times 10^{-19}} \\\\n = 1.248 \times 10^{13} \ electrons[/tex]

Learn more here:https://brainly.com/question/13759516

Q&A Education