Respuesta :

Answer:

[tex] \tan x \sin x [/tex]

Step-by-step explanation:

[tex] \dfrac{\sec x}{1 + \cot^2 x} = [/tex]

[tex] = \dfrac{\frac{1}{\cos x}}{1 + \frac{\cos^2 x}{\sin^2 x}} [/tex]

[tex] = \dfrac{\frac{1}{\cos x}}{\frac{\sin^2 x}{\sin^2 x} + \frac{\cos^2 x}{\sin^2 x}} [/tex]

[tex] = \dfrac{\frac{1}{\cos x}}{\frac{\sin^2 x + \cos^2 x}{\sin^2 x}} [/tex]

[tex] = \dfrac{\frac{1}{\cos x}}{\frac{1}{\sin^2 x}} [/tex]

[tex] = \dfrac{\sin^2 x}{\cos x}} [/tex]

[tex] = \dfrac{\sin x}{\cos x}\sin x [/tex]

[tex] = \tan x \sin x [/tex]

Answer: trigonometric identities

1 C sin^2

2 B csc x(csc x-1)

3 D 1-sin theta/ csc theta

4 D tan x sin x

5 A cos x cot2 x

Q&A Education