Respuesta :
Answer:
[tex]93.75cm^3[/tex]
Step-by-step explanation:
First, calculate the volume of the original prism using;
[tex]v=base\:area\times height[/tex]
[tex]\Rightarrow v=8\times 6[/tex]
[tex]\Rightarrow v=48cm^3[/tex]
Next, find the volume of the dilated prism by multiplying the original prism by;
[tex]k^3=\frac{125}{64}[/tex]
Volume of dilated prism;
[tex]V=\frac{125}{64}\times 48[/tex]
[tex]V=93.75.0cm^3[/tex]
Answer:
The dilated volume will be 93.75 cm³
Step-by-step explanation:
Let us first find the original volume
Original volume = 8 * 6 = 48 cm³
Now
The original volume will increase by a cube of the scale factor because it is a prism
So
48 * (5/4)³
= [48 * 125] / 64
= [48/64] * 125
= (3/4) * 125
= 93.75 cm³