Rewrite the rational expression
Answer:
D. [tex](x^2+x-1)+\frac{-6}{x+4}[/tex]
Step-by-step explanation:
The given rational expression is
[tex]\frac{x^3+5x^2+3x-10}{x+4}[/tex]
We obtain the quotient and remainder using synthetic division.
1 5 3 -10
-4| -4 -4 4
1 1 -1 -6
The quotient is [tex]x^3+x-1[/tex] and the remainder is -6.
The expression becomes;
[tex]\frac{x^3+5x^2+3x-10}{x+4}=(x^2+x-1)+\frac{-6}{x+4}[/tex]
Answer:
The answer is (D) ⇒ ([tex]x^{2}+x-1)+\frac{-6}{x+4}[/tex]
Step-by-step explanation:
∵ [tex]\frac{x^{3}+5x^{2}+3x-10}{x+4}=x^{2}+\frac{x^{2}+3x-10 }{x+4}[/tex]
∵ [tex]\frac{x^{2}+3x-10 }{x+4}=x+\frac{-x-10}{x+4}[/tex]
∵ [tex]\frac{-x-10}{x+4}=-1+\frac{-6}{x+4}[/tex]
∴ The answer is (x² + x - 1) + (-6)/(x + 4)