The coordinates of the endpoints of AB are A(−4, 4) and B(2, 1). Which measurement is closest to the length of AB in units? A) 6.2 units B) 6.7 units C) 7.1 units D) 7.5 units

Respuesta :

Answer:

B) 6.7 units

Step-by-step explanation:

Let [tex](x_1,y_1)=A(-4,4)[/tex] and  [tex](x_2,y_2)=B(2,1)[/tex]

Use the distance formula given by;

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Plug in the values.

[tex]|AB|=\sqrt{(2--4)^2+(1-4)^2}[/tex]

Simplify

[tex]|AB|=\sqrt{(2+4)^2+(-3)^2}[/tex]

[tex]|AB|=\sqrt{(6)^2+(-3)^2}[/tex]

[tex]|AB|=\sqrt{36+9}[/tex]

[tex]|AB|=\sqrt{45}[/tex]

[tex]|AB|=3\sqrt{5}[/tex]

[tex]|AB|=6.7[/tex] units, to the nearest tenth.

Answer:

b

Step-by-step explanation:

Apply the Pythagorean theorem,

62 + (−3)2

=

45

≈ 6.7 units

Q&A Education