Respuesta :

Answer:

[tex]y=-x^{2}+2x[/tex]

[tex]y=-x^{2}+2x-4[/tex]

[tex]y=-x^{2}+2x-3[/tex]

Step-by-step explanation:

we know that

The equation of a vertical parabola in vertex form is equal to

[tex]y=a(x-h)^{2} +k[/tex]

where

(h,k) is the vertex

The axis of symmetry is equal to the x-coordinate of the vertex

so

[tex]x=h[/tex]

If a> 0 then the parabola open upward (vertex is a minimum)

If a< 0 then the parabola open downward (vertex is a maximum)

In this problem we have

[tex]y=-x^{2} +2x+3[/tex]

The vertex is the point [tex](1,4)[/tex] ------> observing the graph

The axis of symmetry is [tex]x=1[/tex]

If the graph of this function is shifted downwards and the axis of symmetry remains x=1

then

The x-coordinate of the vertex of the new graph must be equal to 1

The y-coordinate of the vertex of the new graph must be less than 4

The parabola of the new graph open downward

therefore

Verify each case

case a) [tex]y=-x^{2}+2x[/tex]

Convert to vertex form

[tex]y=-(x^{2}-2x)[/tex]

[tex]y-1=-(x^{2}-2x+1)[/tex]

[tex]y-1=-(x-1)^{2}[/tex]

[tex]y=-(x-1)^{2}+1[/tex]

The vertex is (1,1)

therefore

The function could be the equation of the new graph

case b) [tex]y=-x^{2}-2x+3[/tex]

Convert to vertex form

[tex]y-3=-(x^{2}+2x)[/tex]

[tex]y-3-1=-(x^{2}+2x+1)[/tex]

[tex]y-4=-(x+1)^{2}[/tex]

[tex]y=-(x+1)^{2}+4[/tex]

The vertex is (-1,4)

therefore

The function cannot be the equation of the new graph

case c) [tex]y=-x^{2}+2x-4[/tex]

Convert to vertex form

[tex]y+4=-(x^{2}-2x)[/tex]

[tex]y+4-1=-(x^{2}-2x+1)[/tex]

[tex]y+3=-(x-1)^{2}[/tex]

[tex]y=-(x-1)^{2}-3[/tex]

The vertex is (1,-3)

therefore

The function could be the equation of the new graph

case d) [tex]y=-x^{2}+2x+4[/tex]

Convert to vertex form

[tex]y-4=-(x^{2}-2x)[/tex]

[tex]y-4-1=-(x^{2}-2x+1)[/tex]

[tex]y-5=-(x-1)^{2}[/tex]

[tex]y=-(x-1)^{2}+5[/tex]

The vertex is (1,5)

therefore

The function cannot be the equation of the new graph

case e) [tex]y=-x^{2}+2x-3[/tex]

Convert to vertex form

[tex]y+3=-(x^{2}-2x)[/tex]

[tex]y+3-1=-(x^{2}-2x+1)[/tex]

[tex]y+2=-(x-1)^{2}[/tex]

[tex]y=-(x-1)^{2}-2[/tex]

The vertex is (1,-2)

therefore

The function could be the equation of the new graph

Q&A Education