Solve a triangle with a=32, b=38, and c=46.
Answer:
Step-by-step explanation:
we have a triangle with
a=32, b=38, and c=46
We can use the cosine rule to find the angles
It is
[tex]cos A =\frac{b^2+c^2-a^2}{2bc}[/tex]
so plugging all the values we get
[tex]cos A =\frac{38^2+46^2-32^2}{2.38.46}[/tex]
[tex]cos A =\frac{317}{437}[/tex]
A= 43.5
Now for angle B , the formula is
[tex]cos B= \frac{a^2+c^2-b^2}{2ac}[/tex]
plugging all the vaues again we get
[tex]cos B= \frac{32^2+46^2-38^2}{2.32.46}[/tex]
[tex]cos B= \frac{53}{92}[/tex]
B= 54.8
Now since for a triangle A+B+C =180
so C = 180 - 43.5- 54.8
C=81.7
option a