Respuesta :

frika

Answer:

[tex]\sin\theta=-\dfrac{\sqrt{65}}{9}.[/tex]

[tex]\tan\theta=-\dfrac{\sqrt{65}}{4}.[/tex]

Step-by-step explanation:

1. Use the man trigonometric equality

[tex]\cos^2\theta+\sin^2\theta=1.[/tex]

From this equality

[tex]\sin^2\theta=1-\cos^2\theta,\\ \\\sin^2\theta=1-\left(\dfrac{4}{9}\right)^2,\\ \\\sin^2\theta=1-\dfrac{16}{81},\\ \\\sin^2\theta=\dfrac{65}{81}.[/tex]

2. Since [tex]\csc\theta=\dfrac{1}{\sin\theta}<0,[/tex] you can state that [tex]\sin\theta<0[/tex] and

[tex]\sin\theta=-\sqrt{\dfrac{65}{81}}=-\dfrac{\sqrt{65}}{9}.[/tex]

3. Use the definition:

[tex]\tan\theta=\dfrac{\sin\theta}{\cos\theta}=-\dfrac{\frac{\sqrt{65}}{9}}{\frac{4}{9}}=-\dfrac{\sqrt{65}}{4}.[/tex]

Q&A Education