Respuesta :

frika

Answer:

A

Step-by-step explanation:

Note that

[tex]\csc x=\dfrac{1}{\sin x}[/tex]

and

[tex]\cot x=\dfrac{\cos x}{\sin x}.[/tex]

Then

[tex]\dfrac{\csc x}{\cot x}=\dfrac{\frac{1}{\sin x}}{\frac{\cos x}{\sin x}}=\dfrac{1}{\cos x}=\sec x.[/tex]

Since [tex]\dfrac{\csc x}{\cot x}=\sqrt{2},[/tex] you have that [tex]\sec x=\sqrt{2}.[/tex]

Answer:

Choice A is correct.

Step-by-step explanation:

We  have given the equation:

csc x/ cot x= √2.

We have to find  a numerical value of one trigonometric function of x.

As we know that,

cscx = 1/sinx    and cotx = cosx /sinx we get,

1/sinx  / cosx /sinx = √2

1/cosx = √2

secx = √2

sec x = √2 is the answer.

Q&A Education