Helena creates two similar rectangles using exactly 100 cm of string. The smaller rectangles width and length are 4 cm by 6 cm respectfully. What are the dimensions of the larger rectangle? Rounded to the nearest whole number.

Respuesta :

Answer:

The dimensions of the larger rectangle are [tex]24\ cm[/tex] of length by [tex]16\ cm[/tex] of width

Step-by-step explanation:

Let

x-----> the length of the larger rectangle

y-----> the width of the larger rectangle

we know that

[tex]\frac{x}{y}=\frac{6}{4}[/tex] ------> by similar rectangles

[tex]x=1.5y[/tex] -----> equation A

Find the perimeter of the smaller rectangle

[tex]P=2(6+4)=20\ cm[/tex]

Find the perimeter of the larger rectangle

Subtract  the perimeter of the smaller rectangle from 100 cm of string

[tex]P=100-20=80\ cm[/tex]

Remember that

[tex]80=2x+2y[/tex] ------> [tex]40=x+y[/tex] ------> equation B

substitute equation A in equation B

[tex]40=1.5y+y[/tex]

[tex]2.5y=40[/tex]

[tex]y=16\ cm[/tex]

Find the value of x

[tex]x=1.5(16)=24\ cm[/tex]

The dimensions of the larger rectangle are [tex]24\ cm[/tex] of length by [tex]16\ cm[/tex] of width

Q&A Education