A cyclotron is to accelerate protons to an energy of 5.4 MeV. The superconduction electromagnet of the cyclotron produces a 2.9T magnetic field perpendicular to the proton orbits.When the protons have acheived a kinetic energy of 2.7 MeV, what is the radius of their circular orbit and what is their angular speed?

Respuesta :

Answer;

Radius = 0.0818 m

Angular velocity = 2.775 × 10^7 rad/sec

Explanation;

The mass of proton m=1.6748 × 10^-27 kg;  

Charge of electron e= 1.602 × 10^-19 C;  

kinetic energy E= 2.7 MeV

                          = 2.7 × 10^6 × 1.602 × 10^-19 J;

                          = 4.32 × 10^-13 Joules

But; K.E =0.5m*v^2,

Hence v=√(2K.E/m)

Velocity = 2.27 × 10^7 m/s

Angular velocity, ω = v/r

Therefore; V = ωr

Hence; V = √(2K.E/m) = ωr

r= √(2E/m)/w = √E*√(2*m)/(eB)

  = √E * √(2×1.6748×10^-27)/(1.602×10^-19 ×2.9)

but E =  4.32 × 10^-13 Joules

  r = 0.0818 m

Angular speed

Angular velocity, ω = v/r , where r is the radius and v is the velocity

Therefore;

Angular velocity = 2.27 × 10^7 / 0.0818 m

                            = 2.775 × 10^7 rad /sec

Q&A Education