Respuesta :

QUESTION 5

The opposite sides of a parallelogram are congruent.

[tex]\Rightarrow 4x=20[/tex]

Divide  through by 4.

[tex]\Rightarrow x=5[/tex]

Or

[tex]5x=3x+10[/tex]

[tex]5x-3x=10[/tex]

[tex]2x=10[/tex]

[tex]x=5[/tex]

QUESTION 6

The diagonals of a parallelogram bisect each other.

[tex]\Rightarrow 4x=8[/tex]

Divide both sides by 4;

[tex]\Rightarrow x=2[/tex]

Or

[tex]5x=3x+4[/tex]

[tex]5x-3x=4[/tex]

[tex]2x=4[/tex]

[tex]x=2[/tex]

QUESTION 7

The alternate interior angles of a parallelogram are equal.

[tex]\Rightarrow 4x-20=2x[/tex]

Group similar terms;

[tex]\Rightarrow 4x-2x=20[/tex]

Simplify and solve for x.

[tex]\Rightarrow 2x=20[/tex]

[tex]\Rightarrow x=10[/tex]

QUESTION 8

The opposite angles of a parallelogram are congruent.

[tex]\Rightarrow 3x=2x+19[/tex]

Group similar terms;

[tex]\Rightarrow 3x-2x=19[/tex]

Simplify;

[tex]x=19[/tex]

QUESTION 9

The height, [tex]h[/tex] of this triangle can be determined using the absolute value method.

[tex]h=|4-0|=4[/tex] units.

The base,[tex]b[/tex] can be determined using the absolute value method.

[tex]b=|7-0|=7[/tex] units.

The hypotenuse, [tex]d[/tex] can be determined using the Pythagoras Theorem of distance formula;

[tex]d=\sqrt{7^2+4^2}[/tex]

[tex]d=\sqrt{49+16}[/tex]

[tex]d=\sqrt{65}[/tex] units.

The three sides are unequal. This is a scalene triangle.

QUESTION 10

The base of the triangle is

[tex]b=|2--2|=4[/tex] units.

The altitude of this triangle bisects the base. This means the triangle is isosceles.

We can use the distance formula to confirm this.

The to hypotenuse is

[tex]T=\sqrt{(6-0)^2+(0-2)^2}[/tex]

[tex]T=\sqrt{36+4}[/tex]

[tex]T=\sqrt{40}[/tex]

[tex]T=2\sqrt{10}[/tex] units

The down hypotenuse is

[tex]T=\sqrt{(6-0)^2+(0-2)^2}[/tex]

[tex]D=\sqrt{36+4}[/tex]

[tex]D=\sqrt{40}[/tex]

[tex]D=2\sqrt{10}[/tex] units

QUESTION 11

This parallelogram has all sides congruent, 8 units each.

It is called a square.

A square fits the definition of a rhombus. All sides are equal.

This is a rhombus.

QUESTION 12

One side of the parallelogram is [tex]|3--1|=4[/tex] units.

This is equal to the opposite side.

Another side is [tex]\sqrt{(3-2)^2+(2--1)^2}=\sqrt{10}[/tex] units.

This is also equal to the opposites side.

All the sides of this parallelogram are not congruent.

The diagonals do not also meet at right angles.

The parallelogram is not a rhombus.

Q&A Education