Respuesta :

Hello from MrBillDoesMath!

Answer:

See Discussion below

Discussion:

2 (cos@)^2  +  sqrt(3 cos@) = 0        => subtract sqrt(..) from both sides

2 (cos@)^2 = - sqrt(3 cos@)              => square both sides

4 (cos2)^4 = 3 (cos@)^2                    => subtract 3 (cos@)^2   from both sides

4(cos@)^4 - 3(cos@)^2 =0                 => factor (cos@)^2 from each term

(cos@)^2 ( 4 (cos@)^2 -3 = 0)            => A*B = implies A or B or both are 0

cos@ = 0   or             (*)

cos@ = +\-sqrt(3/4)

cos@ = +\-sqrt(3)/2        (**)

Solution of (*) is @ =    Pi/2 + Pi*n,  n = { 0, +\1, +\- 2, +\- 3,...)

Solution of (**) is @ =   Pi/6 + Pi*n  , n = { 0, +\1, +\- 2, +\- 3,...)

General solution is union of the values in (*) and (**)

Thank you,

MrB

Q&A Education