Respuesta :

Answer:

[tex]\sqrt{2}[/tex]

Step-by-step explanation:

we know that

[tex]tan^{2}(\theta)+1=sec^{2}(\theta)[/tex]

we have

[tex]tan^{2}(\theta)=-1[/tex]

substitute the value

[tex](-1^{2})+1=sec^{2}(\theta)[/tex]

[tex](1)+1=sec^{2}(\theta)[/tex]

[tex]sec^{2}(\theta)=2\\ \\sec(\theta)=(+/-)\sqrt{2}[/tex]

Remember that

The angle theta belong to the III and IV quadrant, but the tangent is negative, therefore belong to the IV quadrant

so

[tex]sec(\theta)[/tex] is positive

therefore

[tex]sec(\theta)=+\sqrt{2}[/tex]

Q&A Education