Solve for x in the equation x² - 10x + 25 = 35.
Answer: Second option.
Step-by-step explanation:
1. To solve this problem you can applly the quadratic formula, which is shown below:
[tex]x=\frac{-b+/-\sqrt{b^{2}-4ac}}{2a}[/tex]
2. The quadratic equation is:
[tex]x^{2}-10x+25-35=0\\x^{2}-10x-10=0[/tex]
3. Then:
a=1
b=-10
c=-10
4. Therefore, when you substitute these values into the quadratic formula, you obtain the following result:
[tex]x=\frac{-(-10)+/-\sqrt{(-10)^{2}-4(1)(-10)}}{2(1)}[/tex]
x=5±√35
Answer:
option B). x = [5 ± √35] is the correct answer
Step-by-step explanation:
Formula:-
for a quadratic equation ax² + bx + 0 = 0
x = [-b ± √(b² - 4ac)]/2a
To find x
Here quadratic equation be, x² - 10x +25 = 35
⇒ x² - 10x + 25 - 35 = 0
⇒ x² - 10x -10 = 0
a = 1, b = -10 and c -10
x = [-b ± √(b² - 4ac)]/2a
x = [-(-10) ± √((-10²) - 4*1*(-10))]/2*1
x = [10 ± √(100 + 40)]/2
x = [10 ± √(140)]/2
x = [10 ± 2√35]/2
x = [5 ± √35]
Therefore option B). x = [5 ± √35] is the correct answer