Respuesta :

Answer: Second option.


Step-by-step explanation:

 1. To solve this problem you can applly the quadratic formula, which is shown below:

 [tex]x=\frac{-b+/-\sqrt{b^{2}-4ac}}{2a}[/tex]

2. The quadratic  equation is:

[tex]x^{2}-10x+25-35=0\\x^{2}-10x-10=0[/tex]

3. Then:

a=1

b=-10

c=-10

4. Therefore, when you substitute these values into the quadratic formula, you obtain the following result:

[tex]x=\frac{-(-10)+/-\sqrt{(-10)^{2}-4(1)(-10)}}{2(1)}[/tex]

x=5±√35

Answer:

option B). x = [5 ± √35] is the correct answer

Step-by-step explanation:

Formula:-

for a quadratic equation ax² + bx + 0 = 0

x = [-b ± √(b² - 4ac)]/2a

To find x

Here  quadratic equation be,  x² - 10x +25 = 35

⇒  x² - 10x + 25 - 35 = 0

⇒   x² - 10x -10 = 0

a = 1, b = -10 and  c -10

x = [-b ± √(b² - 4ac)]/2a

x = [-(-10) ± √((-10²) - 4*1*(-10))]/2*1

x = [10 ± √(100 + 40)]/2

x = [10 ± √(140)]/2

x = [10 ± 2√35]/2

x = [5 ± √35]

Therefore option B). x = [5 ± √35] is the correct answer


Q&A Education