contestada

1.)Solve the inequality. Graph the solution.


−r3≤6

The solution is.

2.)Solve the inequality. Graph the solution.


−4>−43s

The solution is.

3.)Solve the inequality. Graph the solution.


z−2−6≤−2

The solution is.

4.)Solve the inequality. Graph the solution.


−2t−5<9

The solution is.

5.)Solve the inequality. Graph the solution.


7(q+2)<−77

The solution is.

5.)Solve the inequality. Graph the solution.


−13(p+9)≤4

The solution is.

6.)Solve the inequality. Graph the solution.


1.2(j+3.5)≥4.8

The solution is.


Please Help me :(

Respuesta :

Answer:

Part 1) [tex]r\geq \sqrt[3]{-6}[/tex]

Part 2)   [tex]s>4/43[/tex]  

Part 3) [tex]z\leq6[/tex]

Part 4)  [tex]t>-7[/tex]

Part 5) [tex]q<-13[/tex]

Part 6) [tex]p\geq -121/13[/tex]

Step-by-step explanation:      

Part 1)  [tex]-r^{3}\leq 6[/tex]          

Multiply by -1 both sides

[tex]r^{3}\geq -6[/tex]    

[tex]r\geq \sqrt[3]{-6}[/tex]

[tex]r\geq -1.817[/tex]

The solution is the interval -------> [-1.817,∞)

The solution in the attached figure N 1    

Part 2)  [tex]-4>-43s[/tex]    

rewrite

[tex]-43s<-4[/tex]      

Multiply by -1 both sides

 [tex]43s>4[/tex]    

 [tex]s>4/43[/tex]      

 [tex]s>0.09[/tex]    

The solution is the interval--------> (0.09,∞)

The solution in the attached figure N 2

Part 3) [tex]z-2-6\leq-2[/tex]

combine like terms

[tex]z-8\leq-2[/tex]  

Adds 8 both sides

[tex]z\leq-2+8[/tex]

[tex]z\leq6[/tex]

The solution is the interval--------> (-∞,6]

The solution in the attached figure N 3  

Part 4) [tex]-2t-5<9[/tex]    

Adds 5 both sides

[tex]-2t<9+5[/tex]

[tex]-2t<14[/tex]

Multiply by -1 both sides

[tex]2t>-14[/tex]

Divide by 2 both sides

[tex]t>-7[/tex]

The solution is the interval--------> (-7,∞)

The solution in the attached figure N 4  

Part 5) [tex]7(q+2)<-77[/tex]

applying distributive property left side

[tex]7q+14<-77[/tex]

Subtract 14 both sides

[tex]7q<-77-14[/tex]

[tex]7q<-91[/tex]

Divide by 7 both sides

[tex]q<-91/7[/tex]

[tex]q<-13[/tex]

The solution is the interval--------> (-∞,-13)

The solution in the attached figure N 5

Part 6) [tex]-13(p+9)\leq4[/tex]

applying distributive property left side

[tex]-13p-117\leq4[/tex]

Adds 117 both sides

[tex]-13p\leq4+117[/tex]

[tex]-13p\leq 121[/tex]

Divide by -1 both sides

[tex]13p\geq -121[/tex]

Divide by 13 both sides

[tex]p\geq -121/13[/tex]

[tex]p\geq -9.31[/tex]

The solution is the interval--------> [-9.31,∞)  

The solution in the attached figure N 5

Ver imagen calculista
Ver imagen calculista
Ver imagen calculista
Ver imagen calculista
Ver imagen calculista
Q&A Education