Notice that
[tex]\log_{1/e}x=\dfrac{\ln x}{\ln\frac1e}=\dfrac{\ln x}{-\ln e}=-\ln x[/tex]
[tex]f(x)=\ln x[/tex] and [tex]g(x)=-\ln x[/tex] intersect when [tex]x=1[/tex]. For all [tex]x>1[/tex], we have [tex]\ln x>0[/tex] and [tex]-\ln x<0[/tex], so [tex]f(x)>g(x)[/tex]. Then the area we want is given by the integral,
[tex]\displaystyle\int_1^e\ln x-(-\ln x)\,\mathrm dx=2\int_1^e\ln x\,\mathrm dx[/tex]
or in terms of [tex]\log_{1/e}x[/tex],
[tex]\displaystyle\int_1^e\ln x-\log_{1/e}x\,\mathrm dx[/tex]