Answer:
They collect together [tex]406\ seashells[/tex]
Step-by-step explanation:
Let
x-----> number of seashells collected by Amin
y-----> number of seashells collected by Barb
z-----> number of seashells collected by Curt
we know that
[tex]\frac{x}{y}=\frac{10}{12}[/tex]
[tex]x=\frac{10}{12}y[/tex] ------> equation A
[tex]\frac{x}{z}=\frac{10}{7}[/tex]
[tex]x=\frac{10}{7}z[/tex] ------> equation B
[tex]\frac{y}{z}=\frac{12}{7}[/tex]
[tex]y=\frac{12}{7}z[/tex] ------> equation C
In this problem we have
[tex]z=98\ seashells[/tex]
Find the value of x ------> equation B
substitute the value of z
[tex]x=\frac{10}{7}(98)=140\ seashells[/tex]
Find the value of y ------> equation C
substitute the value of z
[tex]y=\frac{12}{7}(98)=168\ seashells[/tex]
therefore
They collect together
[tex]x+y+z=140+168+98=406\ seashells[/tex]