Drag the tiles tot he correct boxes to complete the pairs. Not all tiles will be used... Match each quadratic equation with its solution set.

Drag the tiles tot he correct boxes to complete the pairs Not all tiles will be used Match each quadratic equation with its solution set class=

Respuesta :

Answer:


Step-by-step explanation:

We have given,

[tex]2x^{2} -8x +5 = 0[/tex]

Quadratic solution calculated as : (4±√6)[tex]\frac{1}{2}[/tex]

[tex]2x^{2} -10x -3 = 0[/tex]

Quadratic solution calculated as : (4±√31)[tex]\frac{1}{2}[/tex]

[tex]2x^{2} -8x -3 = 0[/tex]

Quadratic solution calculated as : (4±√22)[tex]\frac{1}{2}[/tex]

[tex]2x^{2} -9x -1 = 0[/tex]

Quadratic solution calculated as : (9±√89)[tex]\frac{1}{4}[/tex]

[tex]2x^{2} -9x +6 = 0[/tex]

Quadratic solution calculated as : (9±√33)[tex]\frac{1}{4}[/tex]

QUESTION 1

The given quadratic equation is

[tex]2 {x}^{2} - 8x + 5 = 0[/tex]

Comparing this to the general quadratic equation,

[tex]a {x}^{2} + bx + c = 0[/tex]

[tex]a=2, b=-8,c=5[/tex]

The solution to the above quadratic equation can be found using the quadratic formula,

[tex]x = \frac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a} [/tex]

We substitute the values into the formula to obtain,

[tex]x = \frac{ - - 8 \pm \sqrt{ {( - 8)}^{2} - 4(2)(5)} }{2(2)} [/tex]

This will simplify to,

[tex]x = \frac{ 8 \pm \sqrt{ 64 -40} }{4} [/tex]

[tex]x = \frac{ 8 \pm \sqrt{ 24} }{4} [/tex]

[tex]x = \frac{ 8 \pm 2\sqrt{ 6} }{4} [/tex]

[tex]x = \frac{ 4 \pm \sqrt{ 6} }{2} [/tex]

[tex] \boxed {2 {x}^{2} - 8x + 5 = 0 \rightarrow \frac{ 4 \pm \sqrt{ 6} }{2} }[/tex]

QUESTION 2

The given quadratic equation is

[tex]2 {x}^{2} - 10x - 3 = 0[/tex]

This implies that,

[tex]a=2,b=-10,c=-3[/tex]

We use the formula to obtain,

[tex]x = \frac{ - - 10\pm \sqrt{ {( - 10)}^{2} - 4(2)( - 3) } }{2(2)} [/tex]

[tex]x = \frac{ 10\pm \sqrt{ 100 + 24 } }{4} [/tex]

[tex]x = \frac{ 10\pm \sqrt{ 124 } }{4} [/tex]

[tex]x = \frac{ 10\pm 2\sqrt{ 31 } }{4} [/tex]

[tex]x = \frac{ 5\pm \sqrt{ 31 } }{2} [/tex]

[tex] \boxed {2 {x}^{2} - 10x - 3 = 0 \rightarrow \frac{ 5\pm \sqrt{ 31 } }{2} }[/tex]

QUESTION 3

The given quadratic equation is

[tex]2 {x}^{2} - 8x - 3 = 0[/tex]

[tex]a=2,b=-8,c=-3[/tex]

[tex]x = \frac{ - - 8\pm \sqrt{ {( - 8)}^{2} - 4(2)( - 3) } }{2(2)} [/tex]

[tex]x = \frac{ 8\pm \sqrt{ 64 + 24 } }{4} [/tex]

[tex]x = \frac{ 8\pm \sqrt{ 88} }{4} [/tex]

[tex]x = \frac{ 8\pm 2\sqrt{ 22} }{4} [/tex]

[tex]x = \frac{ 4\pm \sqrt{ 22} }{2} [/tex]

[tex] \boxed {2 {x}^{2} - 8x - 3 = 0 \rightarrow \frac{ 4\pm \sqrt{ 22} }{2} }[/tex]

QUESTION 4

The given quadratic expression is

[tex]2 {x}^{2} - 9x - 1 = 0[/tex]

[tex]a=2,b=-9,c=-1[/tex]

We use the formula to get,

[tex]x = \frac{ - - 9\pm \sqrt{ {( - 9)}^{2} - 4(2)( - 1) } }{2(2)} [/tex]

[tex]x = \frac{ 9\pm \sqrt{ 81 + 8} }{4} [/tex]

[tex]x = \frac{ 9\pm \sqrt{ 89} }{4} [/tex]

[tex] \boxed {2 {x}^{2} - 9x - 1 = 0 \rightarrow \frac{ 9\pm \sqrt{ 89} }{4} }[/tex]

QUESTION 5

The given quadratic expression is

[tex]2 {x}^{2} - 9x + 6 = 0[/tex]

[tex]a=2,b=-9,c=6[/tex]

[tex]x = \frac{ - - 9\pm \sqrt{ {( - 9)}^{2} - 4(2)( 6) } }{2(2)} [/tex]

[tex]x = \frac{ 9\pm \sqrt{ 81 - 48 } }{4} [/tex]

[tex]x = \frac{ 9\pm \sqrt{ 33 } }{4} [/tex]

[tex] \boxed {2 {x}^{2} - 9x + 6= 0 \rightarrow \frac{ 9\pm \sqrt{ 33 } }{4} }[/tex]

NOT ALL THE TILES ARE USED
Q&A Education